
CGS 3763: OS Concepts (Memory Management) Page 1 © Mark Llewellyn

CGS 3763: Operating System Concepts
Spring 2006

Memory Management – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cgs3763/spr2006

CGS 3763: OS Concepts (Memory Management) Page 2 © Mark Llewellyn

Memory Management
• In a uniprogramming environment, main memory is divided into

two parts: one part for the OS and one part for the program
currently being executed.

• In a multiprogramming environment, the “user” part of memory
must be further subdivided to accommodate multiple processes.

• The task of subdivision is carried out dynamically by the OS and
is referred to as memory management.

• Effective memory management is vital in a multiprogramming
environment. If only a processes are in memory, then for much
of the time all of the processes will be waiting for I/O and the
processor will be idle. Thus memory needs to be allocated to
ensure a reasonable supply of ready processes to consume the
available processor time.

CGS 3763: OS Concepts (Memory Management) Page 3 © Mark Llewellyn

Memory Management

Memory Management Methods

Contiguous Allocation Non-Contiguous Allocation

Single Partition Multiple Partition

Fixed
Allocation

Dynamic
Allocation

Segmentation Paging

"Basic"
Paging

Demand
Paging

(Virtual Memory)

CGS 3763: OS Concepts (Memory Management) Page 4 © Mark Llewellyn

Memory Management Requirements

• The memory management component of the operating
system must satisfy five basic requirements:

1) Relocation

2) Protection

3) Sharing

4) Logical organization

5) Physical organization

• We’ll consider each of these requirements separately.

CGS 3763: OS Concepts (Memory Management) Page 5 © Mark Llewellyn

(1) Relocation
• In a multiprogramming system, the available main memory is

generally shared among a number of processes.

• Typically, it is not possible for the programmer to know in advance
which other programs will be resident in main memory at the time of
execution of their program.

• In addition, we would like to be able to swap active processes in and
out of main memory to maximize processor utilization by providing a
large pool of ready processes to execute. (See next page for an
illustration of swapping.)

• Once a program has been swapped out to disk, it would be quite
limiting to require that it be placed into the same memory region it
previously vacated when it is swapped back into the main memory.
Rather, we would like to relocate the process to a different area of the
memory.

CGS 3763: OS Concepts (Memory Management) Page 6 © Mark Llewellyn

(1) Relocation - Swapping

CGS 3763: OS Concepts (Memory Management) Page 7 © Mark Llewellyn

Aside on Linking and Loading
• The first step in the creation of an active process is to load

a program into main memory and create a process image.

Program

Data

Object code

Program

Data

Process Control Block

Stack

Process Image in main memory

CGS 3763: OS Concepts (Memory Management) Page 8 © Mark Llewellyn

Aside on Linking and Loading (cont.)

• Typically, applications consist of a number of compiled or
assembled modules in object code form.

• These are linked to resolve any references between the
modules. At the same time, references to library routines
are resolved. The library routines themselves may be
incorporated into the program or referenced as shared code
that must be supplied by the OS at run time.

• This scenario is illustrated on the next page.

CGS 3763: OS Concepts (Memory Management) Page 9 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Library

Module 1

Module 2

Module n

Linker Load Module Loader

Main memory

x

CGS 3763: OS Concepts (Memory Management) Page 10 © Mark Llewellyn

Relocation (cont.)

• A physical address, or absolute address, is an actual location in main
memory. These are the addresses with which the memory unit works.

• A logical address or virtual address is a reference to a memory location
independent of the current assignment of data to memory. A translation
must be made to a physical address before the memory access can be
achieved. Logical addresses are generated by the CPU.

• A relative address is a particular example of a logical address, in which
the address is expressed as a location relative to some known point,
usually a value in a processor register.

• Programs that employ relative addressing are loaded using dynamic run-
time loading. Typically, all of the memory references in the loaded
process are relative to the origin of the program. Thus, a hardware
mechanism is required for translating relative addresses into physical
addresses at the time of execution of the instruction that contains the
reference.

CGS 3763: OS Concepts (Memory Management) Page 11 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Loading

• Looking at the figure on page 9, you’ll see that the loader
places the load module in main memory starting at location x.
In loading the program, the addressing requirements of the
program (see next page) must be satisfied.

• In general three different approaches can be taken:

1. Absolute loading

2. Relocatable loading

3. Dynamic run-time loading

CGS 3763: OS Concepts (Memory Management) Page 12 © Mark Llewellyn

Addressing Requirements for a Process

Aside on Linking and Loading (cont.)

CGS 3763: OS Concepts (Memory Management) Page 13 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Absolute Loading

• An absolute loader requires that a given load module always be
loaded into the same location in main memory.

• Thus, in the load module presented to the loader, all address
references must be specific, or absolute, main memory
addresses.

– For example, if x in the figure on page 9 is location 1024, then the first
word in a load module destined for that region of memory has address
1024.

• The assignment of specific address values to memory
references within a program can be done either by the
programmer or at compile or assembly time.

CGS 3763: OS Concepts (Memory Management) Page 14 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Relocatable Loading
• The disadvantage of binding memory references to specific addresses prior

to loading is that the resulting load module can only be placed in one region
of main memory.

• The relocation requirement implies that we would like to be able to load a
module anywhere in main memory.

• To satisfy this requirement, the assembler or compiler produces not absolute
addresses but relative addresses.

• The start of the load module is assigned relative address 0 and all memory
references within the module are expressed in terms relative to 0.

• The loader now has the simple task of placing the module wherever room is
available. If, as in the example, the module is placed beginning at memory
location x, then the loader must simply add x to each memory reference as it
loads the module into memory.

CGS 3763: OS Concepts (Memory Management) Page 15 © Mark Llewellyn

Aside on Address Binding (cont.)

The base and
limit registers
define the logical
address space for
a process.

CGS 3763: OS Concepts (Memory Management) Page 16 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Dynamic Run-Time Loading
• Relocatable loaders are common and provide obvious benefits over absolute

loaders. However, in a multiprogramming environment, even one that does
not depend on virtual memory, the relocating scheme is inadequate.

• Since we may swap a given process in and out of main memory many times
during its lifetime, binding relative addresses to absolute addresses at the
initial load time will not give us the flexibility needed to relocate the same
process image into different locations.

• The alternative is to defer the calculation of an absolute address until it is
actually needed at run time.

• For this purpose, the load module is loaded into main memory with all
memory references in relative form. It is not until an instruction is executed
that the absolute address is calculated.

• To assure that this function does not degrade performance, it is handled by
special processor hardware rather than software.

CGS 3763: OS Concepts (Memory Management) Page 17 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Dynamic Run-Time Loading

CGS 3763: OS Concepts (Memory Management) Page 18 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Dynamic Run-Time Loading

CGS 3763: OS Concepts (Memory Management) Page 19 © Mark Llewellyn

Aside on Linking and Loading (cont.)

Memory Management Unit (MMU)
• The MMU is a hardware device that maps logical addresses to

physical addresses.

• Base register replaced by relocation register.

• In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent
to memory.

• The user program deals with logical addresses; it never sees the
real physical addresses

CGS 3763: OS Concepts (Memory Management) Page 20 © Mark Llewellyn

Hardware Support For Relocation

CGS 3763: OS Concepts (Memory Management) Page 21 © Mark Llewellyn

Aside on Address Binding
• In order to load a program, instructions and associated data

must be mapped or “bound” to specific locations in
memory

• Address binding can happen at three different stages.
– Compile time:

• If memory location known a priori, absolute code can be generated; must
recompile code if starting location changes.

– Load time:
• Must generate relocatable code if memory location is not known at compile

time.

– Execution or Run time:
• Binding delayed until run time if the process can be moved during its

execution from one memory segment to another. Special hardware (e.g.,
MMUs) required for address mapping.

CGS 3763: OS Concepts (Memory Management) Page 22 © Mark Llewellyn

Aside on Address Binding (cont.)

ALGORITHM

ASSEMBLER
OR

COMPILER

Program

OBJECT
CODE

LIBRARIES

LINKEREXECUTABLE
CODE

LOADER

PROBLEM

Executing
Process

Compile Time
Binding

Load Time
Binding Run Time

Binding

User
programs
goes through
several steps
before being
executed

CGS 3763: OS Concepts (Memory Management) Page 23 © Mark Llewellyn

SINGLE PROGRAM, COMPILE TIME BINDING

 int x = 99999;

S
ou

rc
e

P
ro

gr
am

LD R1, 1790

C
od

e
/ I

ns
tru

ct
io

ns
D

at
a

/ V
ar

ia
bl

es

1000

1001

1351

1352

1705

1790

1704

1899

99999

0

999

1899

5999

LD R1, 1790

1000

1001

1351

1352

1705

1790

1704

1899

99999

OS
(1000K)

1000

1900

Single Partition
P1 (900K)

Wasted
Memory
(4100K)

Programmer
View

Compiled View
(Absolute Code
Starting at 1000)

System View System View
(Magnified)

1000Fence
Register

 int y;

 y = x;

ST R1, 1791

1791

ST R1, 1791

1791

5999Top of
Memory

(x)

(y)

CGS 3763: OS Concepts (Memory Management) Page 24 © Mark Llewellyn

SINGLE PROGRAM, LOAD TIME BINDING
S

ou
rc

e
P

ro
gr

am

LD R1, 790(FR)

C
od

e
/ I

ns
tru

ct
io

ns
D

at
a

/ V
ar

ia
bl

es

0

1

351

352

705

790

704

899

99999

0

999

1899

5999

LD R1, 1790

1000

1001

1351

1352

1705

1790

1704

1899

99999

OS
(1000K)

1000

1900

Single Partition
P1 (900K)

Wasted
Memory
(4100K)

Programmer
View

Compiled View
(Relocatable Code) System View System View

(Magnified)

 int x = 99999;
 int y;

 y = x;

ST R1, 791(FR) ST R1, 1791

(x)

(y)791 1791

1000Fence
Register

5999Top of
Memory

CGS 3763: OS Concepts (Memory Management) Page 25 © Mark Llewellyn

(1) Relocation (cont.)

• Since we cannot know ahead of time where a program will be
placed in the memory, and we must allow it to be moved about
in the memory due to swapping, some technical concerns
related to addressing must be considered.

• The diagram on page 12 shows a process image. For
simplicity, assume that the process image occupies a
contiguous region of main memory. Obviously, the OS will
need to know the location of the PCB and the execution stack,
as well as the entry point to begin execution of the program for
this process.

• Since the OS is managing the memory and is responsible to
loading the process into main memory, these addresses are easy
to come by.

CGS 3763: OS Concepts (Memory Management) Page 26 © Mark Llewellyn

(1) Relocation (cont.)

• However, the processor must also deal with memory references
within the program.

• Branch instructions contain an address which reference the
instruction to be executed next.

• Data reference instructions contain the address of the word or
byte of the data referenced.

• Somehow, the processor hardware and the OS software must be
able to translate the memory references found in the code of the
program into actual physical memory addresses which reflect
the current location of the program in main memory.

CGS 3763: OS Concepts (Memory Management) Page 27 © Mark Llewellyn

(2) Protection
• Each process should be protected against unwanted interference

by other processes, whether accidental or intentional.

• Programs in other processes should not be able to reference
memory locations in a process for reading or writing purposes
without permission.

• In one sense, satisfying the relocation requirement increases the
difficulty of satisfying the protection requirement. Because the
location of a program in main memory is unpredictable, it is
impossible to check absolute addresses at compile time to
assure protection.

• Furthermore, most programming languages allow the dynamic
calculation of addresses at run time (e.g., computing an array
subscript or a pointer into a data structure).

CGS 3763: OS Concepts (Memory Management) Page 28 © Mark Llewellyn

(2) Protection (cont.)

• Because of this situation, all memory references generated by a
process must be checked at run time to ensure that they refer
only to the memory space allocated to that process.

• Fortunately, as we shall see later, the mechanisms that support
relocation also support the protection requirement.

• Normally, a user process cannot access any portion of the OS,
neither program nor data. Again, usually a program in one
process cannot branch to an instruction in another process.
Without special arrangement, a program in one process cannot
access the data area of another process. The processor must be
able to abort such instructions at the point of execution.

CGS 3763: OS Concepts (Memory Management) Page 29 © Mark Llewellyn

(2) Protection (cont.)

• Note that the memory protection requirement must be satisfied
by the processor (hardware) rather than the OS (software).

• This is because the OS cannot anticipate all of the memory
references that a program will make. Even if such anticipation
were possible, it would be prohibitively time consuming to
screen each program in advance for possible memory-reference
violations.

• Thus, it is only possible to assess the permissibility of a
memory reference (either a data access or a branch) at the time
of execution of the instruction making the reference.

• To accomplish this, the processor hardware must have this
capability.

CGS 3763: OS Concepts (Memory Management) Page 30 © Mark Llewellyn

(3) Sharing
• Any protection mechanism must have the flexibility to allow

several processes to access the same portion of main memory.
– For example, if a number of processes are executing the same program,

it is advantageous to allow each program to access the same copy of the
program rather than have its own separate copy.

– Processes that are cooperating on some task may need to share access to
the same data structure.

• The memory management system must allow controlled access
to shared areas of the memory without compromising essential
protection.

• As before, the mechanisms that are used to support relocation
also support sharing capabilities. We’ll see evidence of this
later.

CGS 3763: OS Concepts (Memory Management) Page 31 © Mark Llewellyn

(4) Logical Organization
• Main memory in a computer system is almost always

organized as a linear, or one-dimensional, address
space, consisting of a sequence of bytes or words.

• While this organization closely mirrors the actual
machine hardware, it does not correspond to the way
which programs are typically constructed.

– Most programs are organized into modules, some of which
are unmodifiable (read only, execute only) and some of
which contain data that may be modified.

• If the OS and computer hardware can effectively deal
with user programs and data in the form of modules of
some sort, then a number of advantages can be
realized:

CGS 3763: OS Concepts (Memory Management) Page 32 © Mark Llewellyn

(4) Logical Organization (cont.)

1. Modules can be written and compiled independently, with all
references from one module to another resolved by the system
at run time.

2. With only slight additional overhead, different degrees of
protection (read only, execute only) can be given to different
modules.

3. It is possible to introduce mechanisms by which modules can
be shared among processes.

• The advantage is that this corresponds to the user’s way of viewing the
problem, and hence it is easy for the user to specify the sharing that is
desired.

• The mechanism that most readily satisfies these requirements is
segmentation, which we will see a bit later.

CGS 3763: OS Concepts (Memory Management) Page 33 © Mark Llewellyn

(5) Physical Organization
• Computer memory is typically organized into a least

two levels, referred to as main memory and secondary
memory.

Main memory
– Provides fast access at relatively high cost.

– Volatile (not permanent – requires refresh)

Secondary memory
– Slower and cheaper

– Typically not volatile

– Typically massive amounts

CGS 3763: OS Concepts (Memory Management) Page 34 © Mark Llewellyn

(5) Physical Organization (cont.)

• The flow of information between the main and secondary
memory is a major system concern in this two-level memory
organization scheme.

• While the responsibility for this flow could be assigned to the
individual programmer, but this is impractical and undesirable
for two reasons:

1. The main memory available for a program plus its data may be
insufficient. In this case the programmer must use overlays. Overlays
waste programmer time. (See next page for overlay detail.)

2. In a multiprogramming environment, the programmer does not know at
the time of coding how much space will be available nor where that
space will be located.

• Clearly, the task of moving information between the two levels
must be a system responsibility. This task is the essence of
memory management.

CGS 3763: OS Concepts (Memory Management) Page 35 © Mark Llewellyn

(5) Physical Organization (cont.)

Overlays
• Keep in memory only those

instructions and data that
are needed at any given
time.

• Needed when process is
larger than amount of
memory allocated to it.

• Examples: 2-Pass
Assembler, Multi-Pass
Compiler

CGS 3763: OS Concepts (Memory Management) Page 36 © Mark Llewellyn

Memory Partitioning
• The principle operation of memory management is to bring

processes into main memory for execution by the processor.
• In almost all modern multiprogramming systems, this involves

a sophisticated scheme known as virtual memory.
• Virtual memory is, in turn, based on the use of one or both of

two basic techniques known as segmentation and paging.
• Before we examine virtual memory systems we need to look at

some simpler techniques (most of which were used in earlier
OS) on which virtual memory systems are based. It will make
it easier to understand the virtual memory systems, if you first
understand the basics of partitioning, simple paging, and simple
segmentation.

• The table on the next two pages provides a brief summary of
the most common memory management techniques.

CGS 3763: OS Concepts (Memory Management) Page 37 © Mark Llewellyn

A small amount of
internal fragmentation.

No external
fragmentation

Main memory is divided into a
number of equal-size frames.
Each process is divided into a
number of equal-size pages of the
same length as frames. A
process is loaded by loading all
of its pages into available, not
necessarily contiguous frames.

Simple Paging

Inefficient use of memory
due to internal
fragmentation.
Maximum number of
active processes is fixed.

Simple to implement.
Little OS overhead

Main memory is divided into a
number of static partitions at
system generation time. A
process may be loaded into a
partition of equal or greater size

Fixed Partitioning

Inefficient use of the
processor due to the need
for compaction to offset
external fragmentation.

No internal
fragmentation
More efficient use of
main memory

Partitions are created
dynamically, so that each process
is loaded into a partition of
exactly the same size as the
process

Dynamic
Partitioning

WeaknessesStrengthsDescriptionTechnique

Summary of Memory Management Techniques – Part 1

CGS 3763: OS Concepts (Memory Management) Page 38 © Mark Llewellyn

Overhead of complex
memory management.

No internal fragmentation.
Higher degree of
multiprogramming.
Large virtual address
space.
Protection and sharing
support.

Same as simple segmentation,
except that it is not necessary
to load all of the segments of
a process. Non-resident
segments that are needed are
brought in later automatically.

Virtual-Memory
Segmentation

External fragmentation

No internal fragmentation.
Improved memory
utilization and reduced
overhead compared to
dynamic partitioning.

Each process is divided into a
number of segments. A
process is loaded by loading
all of its segments into
dynamic partitions that need
not be contiguous.

Simple
Segmentation

Overhead of complex
memory management

No external fragmentation.
Higher degree of
multiprogramming.
Large virtual address
space.

Same as simple paging,
except that it is not necessary
to load all of the pages of a
process. Non-resident pages
that are needed are brought in
later automatically.

Virtual-Memory
Paging

WeaknessesStrengthsDescriptionTechnique

Summary of Memory Management Techniques – Part 2

CGS 3763: OS Concepts (Memory Management) Page 39 © Mark Llewellyn

Fixed Partitioning

• In most schemes for memory management, we
can assume that the OS occupies some fixed
portion of main memory and that the rest of
main memory is available for use by multiple
processes.

• The simplest scheme for managing this
available memory is to partition it into regions
with fixed boundaries.

CGS 3763: OS Concepts (Memory Management) Page 40 © Mark Llewellyn

Fixed Partitioning – Partition Sizes

• The figure on the next page illustrates the two
alternatives for fixed partitions.

• One possibility is to partition the memory into equal
size partitions. This is illustrated by the figure on the
left.

• The other possibility, illustrated by the figure on the
right, is to partition the memory into varying size
partitions.

CGS 3763: OS Concepts (Memory Management) Page 41 © Mark Llewellyn

Fixed Partitioning

Equal-size partitions
Fixed

Partitioning

Unequal-size
partitions

CGS 3763: OS Concepts (Memory Management) Page 42 © Mark Llewellyn

Fixed Partitioning – Partition Sizes (cont.)

Equal-size partitions
• There are two problems associated with equal-size fixed

partitioning:
1. A program may be too big to fit into a partition. In this case, the

programmer must design the program using overlays.

2. Main memory utilization is extremely inefficient. Any program, no
matter how small, occupies an entire partition. In the example shown on
the previous page, if we have a program that requires only 1 MB of
space, it will occupy an 8 MB partition whenever it is swapped in,
rendering 7 MB of wasted space.

• The phenomenon of wasted space internal to a partition, which
results whenever the program/data loaded into the partition is
smaller than the partition, is known as internal fragmentation.

CGS 3763: OS Concepts (Memory Management) Page 43 © Mark Llewellyn

Fixed Partitioning – Partition Sizes (cont.)

Unequal-size partitions

• The two problems associated with equal-size fixed
partitioning can both be lessened, though not solved,
by using unequal-sized partitions.:

1. Using the example partitioning shown on page 41, programs
as large as 16 MB can be accommodated without using
overlays.

2. Again, using the example on page 41, partitions as small as
2 MB exist, so that a 1MB program would result in only 1
MB of wasted space rather than the 7 MB that would be
wasted using equal-size partitioning. This results in less
internal fragmentation.

CGS 3763: OS Concepts (Memory Management) Page 44 © Mark Llewellyn

Fixed Partitioning – Placement Algorithm
Equal-size partitions

– As long as there is an available partition, a process can be
loaded into that partition.

– Because all partitions are of equal size, it does not matter
which partition is used.

– If all partitions are occupied with processes that are not
ready to run, then one of these processes must be swapped
out to make room for a new process.

• Which one to swap out is a scheduling decision, not a memory
management decision.

CGS 3763: OS Concepts (Memory Management) Page 45 © Mark Llewellyn

Fixed Partitioning – Placement Algorithm
Unequal-size partitions
• With unequal-size partitions, there are two possible ways in which to assign

processes to partitions:

• The simplest way is to assign each process to the smallest partition within
which it will fit. (See figure (a) on page 47.)

– In this case a scheduling queue is needed for each partition, to hold swapped out
processes destined for that partition.

– The advantage of this approach is that processes are always assigned in such a
way as to minimize internal fragmentation.

• Although this approach seems optimal from the point of view of an
individual partition, it is not optimal from the point of view of the system as
a whole.

– For example, consider the case when there are no processes with a size between
12 MB and 16 MB. Then the entire 16 MB partition will remain unused, even
though some smaller processes could have been assigned to it.

CGS 3763: OS Concepts (Memory Management) Page 46 © Mark Llewellyn

Fixed Partitioning – Placement Algorithm
Unequal-size partitions
• For this reason, a better approach is to use a single queue for all

processes. (See figure (b) on page 47.)
– When it is time to load a process into main memory, the smallest

available partition that will hold the process is selected.

– If all partitions are occupied, then a swapping decision must be made.

– Preference might be given to swapping out the smallest process from the
partition that will hold the incoming process. Although, other factors
such as priority and a preference for swapping out blocked processes
rather than ready processes, may also be used.

CGS 3763: OS Concepts (Memory Management) Page 47 © Mark Llewellyn

CGS 3763: OS Concepts (Memory Management) Page 48 © Mark Llewellyn

Fixed Partitioning – Summary
• The use of unequal-size partitions provides a degree of

flexibility to the fixed partitioning scheme.

• In addition, fixed partitioning schemes are relatively simple and
require minimal OS software and processing overhead.

• However, there are distinct disadvantages to this approach:
– The number of partitions specified at system generation time limits the

number of active (not suspended) processes in the system at any given
time.

– Because partition sizes are preset at system generation time, small jobs
will not utilize partition space efficiently causing internal fragmentation.

• The use of fixed partitioning is almost unknown today. One
example of a successful OS that utilized this technique was an
early IBM mainframe operating system, OS/MFT
(Multiprogramming with a Fixed Number of Tasks).

CGS 3763: OS Concepts (Memory Management) Page 49 © Mark Llewellyn

Dynamic Partitioning
• To overcome some of the problems associated with fixed

partitioning, an approach known as dynamic partitioning was
developed.

• Again, this approach has been replaced by more sophisticated
memory management techniques, but it is helpful to understand
the basic concepts behind this strategy.

• With dynamic partitioning, the partitions are of variable length
and number.

• When a process is brought into main memory, it is allocated
exactly as much memory as it requires and no more.

CGS 3763: OS Concepts (Memory Management) Page 50 © Mark Llewellyn

Dynamic Partitioning (cont.)

• The figures on the next page illustrate a dynamic partitioning example, using
64 MB of memory.

• In figure (a), main memory is initially empty, except for the OS.

• In figures (b), (c), and (d), the first three processes are loaded, starting where
the OS ends and occupying just enough space for each process. This leaves
a “hole” at the end of memory which is too small for a fourth process.

• At some point in time (figure (e)) the OS swaps out process 2, which leaves
enough room to load another process, process 4 as shown in figure (f).

• Since process 4 is smaller than process 2, another smaller hole is created.

• Later, a point is reached when none of the processes in main memory are
ready, but process 2, in the ready/suspend state, is available. However, since
there is insufficient room for process 2, the OS swaps out process 1 (figure
(g)) and swaps process 2 back in (figure (h)).

CGS 3763: OS Concepts (Memory Management) Page 51 © Mark Llewellyn

CGS 3763: OS Concepts (Memory Management) Page 52 © Mark Llewellyn

Dynamic Partitioning (cont.)

• As the example illustrates, dynamic partitioning starts out well
enough, but eventually leads to a situation in which there are a
lot of small holes in memory.

• As time goes by, the memory becomes more and more
fragmented, and memory utilization declines.

• This phenomenon is known as external fragmentation.

• External fragmentation is the memory that is external to all
partitions. This is indirect contrast to the internal fragmentation
which was the result of fixed partitioning.

CGS 3763: OS Concepts (Memory Management) Page 53 © Mark Llewellyn

Dynamic Partitioning (cont.)

• One technique for overcoming external fragmentation is
compaction.

• With compaction, from time to time, the OS shifts the processes
so that they are contiguous and all of the unoccupied (free)
memory is placed together in one block.

– For example, in figure (h) on page 51, compaction would result in a free
block of memory 16 MB in size, since the free blocks of size 6 MB, 6
MB, and 4 MB would be coalesced into a single block of free memory.

• The difficulty with compaction is that it is a time consuming
process and wasteful of processor time. Note that compaction
implies the need for a dynamic relocation capability.

CGS 3763: OS Concepts (Memory Management) Page 54 © Mark Llewellyn

Dynamic Partitioning – Placement Algorithm
• Because memory compaction is time consuming, the OS

designer must be clever in deciding how to assign processes to
memory (how to plug the holes).

• When it is time to load or swap a process into main memory,
and if there is more than one free block of memory of sufficient
size, then the OS must decide which free block to allocate to
the process.

• There are three basic placement algorithms that might be
considered:

1. Best-fit: chooses the block that is closest in size to the request.

2. First-fit: scans memory from the beginning and chooses the first
available block which is large enough to accommodate the request.

3. Next-fit: scans memory from the location of the last placement, and
chooses the next available block with sufficient size.

CGS 3763: OS Concepts (Memory Management) Page 55 © Mark Llewellyn

Dynamic Partitioning – Placement Algorithm
• Figure (a) on the next page, shows an example memory

configuration after a number of placement and swapping out
operations.

• The last block that was used was a 22 MB block from which a
14 MB partition was created.

• Figure (b) illustrates the differences between the best-, first-,
and next-fit placement algorithms in satisfying a 16 MB
allocation request.

– Best-fit will search the entire list of available blocks and make use of the
18 MB block, leaving a 2 MB fragment.

– First-fit results in a 6 MB fragment.

– Next-fit results in a 20 MB fragment.

CGS 3763: OS Concepts (Memory Management) Page 56 © Mark Llewellyn

Next-fit starts
searching from here

Best-fit considers blocks:
8MB, 12 MB, 22 MB, 18 MB,
8MB, 6 MB, 14 MB, and 20 MB
Best-fit partitions 18 MB block
leaving a 2 MB fragment.

First-fit considers blocks:
8 MB, 12 MB, 22 MB
First-fit partitions 22 MB block,
Leaving a 6 MB fragment.

Next-fit considers blocks:
8 MB, 6 MB, 14 MB, 36 MB
Next-fit partitions 36 MB block leaving a
20 MB fragment.

Best-fit and first-fit start
searching from here.

CGS 3763: OS Concepts (Memory Management) Page 57 © Mark Llewellyn

Dynamic Partitioning – Placement Algorithm
• Which of the placement algorithms is best depends on the exact sequence of

process swapping that occurs and the size of those processes. However,
some generalizations can be made:

– The first-fit algorithm is not only the simplest but is usually the best and fastest
as well.

– The next-fit algorithm tends to produce slightly worse results than the first-fit.

– The next-fit algorithm will more frequently lead to an allocation from a free
block at the end of memory. The result is that the largest block of free memory,
which usually appears at the end of the memory space, is quickly broken up into
small fragments. Thus, compaction may be required more frequently under the
next-fit protocol.

– On the other hand, the first-fit scheme tends to litter the front-end of the memory
space with small free partitions that need to be searched on each subsequent
first-fit pass.

– Despite its name, best-fit usually performs the worst. Since this algorithm looks
for the smallest block which satisfies the request, the remaining fragment is as
small as possible. The result is many small blocks too small to satisfy any
request. Thus, compaction is required even more frequently.

CGS 3763: OS Concepts (Memory Management) Page 58 © Mark Llewellyn

Dynamic Partitioning – Summary

• Dynamic partitioning is rarely utilized in modern OS. One
example of a successful OS that utilized this technique was an
early IBM mainframe operating system, OS/MVT
(Multiprogramming with a Variable Number of Tasks).

